Skip to content

Perceptions and Reactions to Tornado Warning Polygons: Would a Gradient Polygon Be Useful?

Jon, Ihnji; Huang, Shih-kai; Lindell, Michael K. (2018). Perceptions and Reactions to Tornado Warning Polygons: Would a Gradient Polygon Be Useful? International Journal Of Disaster Risk Reduction, 30, 132 – 144.

View Publication

Abstract

To better understand people's interpretations of National Weather Service's tornado warning polygons, 145 participants were shown 22 hypothetical scenarios in one of four displays-deterministic polygon, deterministic polygon + radar image, gradient polygon, and gradient polygon + radar image. Participants judged each polygon's numerical strike probability (p(s)) and reported the likelihood of taking seven different response actions. The deterministic polygon display produced p(s) that were highest at the polygon's centroid and declined in all directions from there. The deterministic polygon + radar display, the gradient polygon display, and the gradient polygon + radar display produced p(s) that were high at the polygon's centroid and also at its edge nearest the tornadic storm cell. Overall, p(s) values were negatively related to resuming normal activities, but positively correlated with expectations of resuming normal activities, seeking information from social sources, seeking shelter, and evacuating by car. These results replicate the finding that participants make more appropriate p(s) judgments when polygons are presented in their natural context of radar images than when the polygons are presented in isolation and that gradient displays appear to provide no appreciable benefit. The fact that p(s) judgments had moderately positive correlations with both sheltering (a generally appropriate response) and evacuation (a generally inappropriate response) provides experimental confirmation that people threatened by actual tornadoes are conflicted about which protective action to take.

Keywords

Protective Action; Uncertainty; Risk; Psychology; Casualties; Tornado Warning Polygons; Risk Perceptions; Protective Actions